

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

204 477 5381 tel 204 284 2040 fax

September 19, 2011

Mr. Randy Benoit Manager of WPS HQ Project Winnipeg Police Services 210-266 Graham Avenue Winnipeg, Manitoba

Dear Sir,

Project No: 60162215 (409.19)

Regarding: Winnipeg Police Service Firearm Training Facility Geotechnical Report

1. Introduction

AECOM Canada Ltd. (AECOM) has been retained by Winnipeg Police Services (WPS) to provide engineering services for the design of an outdoor firing range and associated facilities, including a single storey building, range-master tower, two storm water retention ponds, access road, parking area and earthen berm enclosure for the firing range.

This report summarizes the findings of a geotechnical investigation undertaken at the site and provides geotechnical recommendations related to the design and construction of the proposed facilities.

2. Geotechnical Investigation

The proposed site is located north of Wyper Road, and west of the Trans Canada Highway (Perimeter Highway) in Winnipeg. The property is currently utilized as cropland. The proposed site layout is shown on Figure 01 attached.

Twenty-five test holes were drilled at the proposed site between August 3-4, 2011. The approximate locations are shown on the attached test hole location plan, Figure 01.

The locations of the test holes were originally selected based on a preliminary site plan. The configuration and location of the building and other major structures were changed as the plans developed. Therefore the test holes that were drilled are no longer aligned with the proposed facilities. Due to the accelerated project schedule, and limited budget, it was determined by the project team that performing an additional investigation at the new building location would impact the project delivery schedule and therefore no additional investigation was completed for the new layout. Subsurface conditions in Winnipeg area are reasonably uniform and no major variations are

expected, however the project construction budget and schedule should allow for provisions in the event that adverse groundwater and/or subsurface conditions are encountered.

Detailed logs have been prepared for each test hole to record the description and relative position of the soil strata, the location of the samples, field and laboratory test results, drilling conditions, standpipe installation details and other pertinent information. The test hole logs are attached.

2.1 Subsurface Conditions

In descending order, the general soil profile is as follows,

- Topsoil
- Clay
- Silt Till

<u>Topsoil</u>

A relatively thin layer of topsoil was encountered at all test hole locations, up to 0.3 m thick.

<u>Clay</u>

Clay was encountered at all test hole location to a depth of 8.1 to 8.8 m below grade at the test hole locations. Generally, the clay is silty, moist, stiff, becoming soft with depth, and of high plasticity.

<u>Till</u>

Silt matrix till was encountered beneath the clay. The depth to auger refusal at the test hole locations ranged from 8.8 m to 10.2m

2.2 Groundwater Conditions

Four standpipe piezometers were installed at the locations of TH 11-08, 12, 21 and 26, to monitor the groundwater condition in the till. The groundwater levels are reported on the test hole logs. The groundwater levels range from elevation 235.27 m to 235.42 m at TH 11-12 and TH 11-08 respectively (measured Aug 10, 2011).

3. Foundation Alternatives

Driven Prestressed Precast Concrete (PPC) piles and cast in place friction piles are considered feasible alternatives to support the proposed buildings. Driven steel piles are considered not to be cost effective foundation alternative at this site. Shallow foundations are considered less suitable because of the depth to competent bearing stratum, long term settlement, associated excavation work, requirement for thermal insulation and potential impact on project schedule.

3.1 Driven Prestressed Precast Concrete (PPC)

The subsurface conditions at the site are suitable for driven PPC piles bearing into the dense glacial till. PPC piles can be designed on the basis of the conventional allowable capacities shown in Table 01 provided the piles are driven to the corresponding set criteria. The piles should be driven using a hammer with a rated energy of at least 40 kJ.

PPC Pile Diameter (mm)	Maximum Allowable Capacity (kN)	Set Criteria (blows/25 mm)		
300	450	5		
350	625	8		
400	800	12		

Table 01: Maximum Allowable Capacities for PPC Piles

Final set for driven PPC piles should be taken as three consecutive sets criteria as defined in the table above. PPC piles driven to the above criteria will develop the majority of their capacity from toe resistance, and therefore, no reduction in pile capacity is necessary for reasons related to group action. The design capacity of a pile group can be taken as the number of piles in the group multiplied by the allowable capacity per pile.

Further design and construction recommendations for PPC piles are summarized below:

- The weight of the embedded portion of the pile may be neglected in the design.
- The above allowable values pertain to soil resistance only. The pile cross sections must be designed to withstand the design loads and the driving forces during installation.
- Pile spacing should not be less than 2.5 pile diameters, measured center to center.
- Pre-boring not greater than 4 m may be use at all driven pile locations, to enhance pile plumbness and alignment, and to reduce the effects of pile heave during driving of adjacent piles. The diameter of the pre-bore hole should not exceed the nominal diameter of the pre-cast concrete pile. All piles should be driven continuously to the final set, once driving is initiated.
- All piles driven within 5 pile diameters should be monitored for heave and where heave is observed, the piles should be re-driven. Piles that are re-driven should be driven to the set criteria outlined above (i.e. re-drive piles for one full set).
- Any piles that are damaged, excessively out of plumb or refuse prematurely due to encountering boulders in the till may need to be replaced, pending a review of their load carrying capacity and expected settlement by a qualified geotechnical engineer.
- Where a steel follower is used to install the pre-cast concrete piles below ground surface, the set criteria may need to be adjusted to account for anticipated energy losses through the use of the follower. Adjustments to the set criteria should be determined by a qualified geotechnical engineer based on the site conditions, installation procedure and pile driving equipment.
- The driving of all piles should be documented by competent and knowledgeable geotechnical personnel.
- Sulphate resistant cement (Type HS) should be used for all concrete in contact with the soil.

• PDA testing is recommended to confirm efficiency of the pile driving system, assess driving stresses and evaluate pile capacity.

3.2 Cast-In-Place Friction Piles

Friction piles can be used to support lightly loaded structures. Frictional resistance from the top 3 m of the soil profile for exterior piles and the top 2 m of soil profile for the interior piles should not be counted towards the pile capacity due to potential volume change of soil and impact on soil/pile adhesion. The piles should not penetrate the till deposit to protect against groundwater infiltration, and the pile bore should be terminated at least 1.5 m above the clay/ till interface. Selection of the pile length should recognize the depth to till and the requirements to protect against upward seepage and hydraulic fracturing due to artesian water conditions in the till. Due to the location of the test holes in relation to the proposed building, the depth to till has not been determined at the final location of the proposed building. The shear strength tests were also performed on samples that are not in the immediate vicinity of the proposed building.

Table 02 provides values for the allowable unit skin friction resistance.

Zone (m below grade)	Allowable Skin Friction (kPa)
Exterior of Building	
0-3	0
3-7	12 kPa
Below 7 m	10 kPa
Interior of Building	
0-2	0
2-7	12 kPa
Below 7 m	10 kPa

Table 02. Allowable Unit Skin Friction for Cast-In-Place Friction Piles

Further design and construction recommendations for cast-in-place friction piles are summarized below:

- Minimum pile diameter of 600 mm is recommended.
- Pile spacing should not be less than 3 pile diameters, measured center to center.
- The embedded pile length should not be less than 6 m, however the pile length should be designed to provide adequate lateral and uplift resistance. Allowable uplift resistance equal 2/3 of the values shown in Table 02 can be used in the design. The pile design should include adequate steel reinforcement to withstand applicable loading conditions.
- Temporary sleeves may be required to protect against bore sloughing, and groundwater intrusion. The concrete should be placed immediately after completion of drilling.

- The pile bore should be pumped dry prior to concrete placement. If this cannot be achieved, the concrete should be placed using tremie methods.
- Sulphate resistant cement (Type HS) should be used for all concrete in contact with the soil.
- Pile installation should be documented by competent and knowledgeable geotechnical personnel.

4. Storm-water Retention Ponds

A cut slope of 6 Horizontal to 1 Vertical (6H:1V) is considered acceptable for the storm-water retention basins and is expected to perform satisfactorily. For stability reason, the crest of the cut slope (edges of the excavation) should be a minimum 8 m and 12 m away from the toe of the side and backstop berms respectively.

Base heave analysis considered the prevailing groundwater condition in the underlying till unit and the potential for hydraulic fracturing or heaving of the base of the excavation. The critical condition is during construction when there would be no water in the excavations. A factor of safety (FS) of 1.2 against base heave is considered acceptable for short term condition (during construction) and was used for the analysis. To maintain this design objective (FS = 1.2), the excavations for the stormwater retention ponds should not extend below elevation 233.2 m. The factor of safety against base heave will improve once the retention ponds are filled with water, therefore the ponds should be used as soon as practical. Every effort should be directed towards minimizing the duration of the excavation.

The excavation bottom will be below the measured groundwater levels in the till and the potential for upward seepage along existing natural fractures within the clay unit cannot be ruled out. Therefore requirements for construction dewatering should be allowed for in the construction budget and schedule.

Dewatering of the ponds after commissioning should be avoided due to concerns with cut slope stability and base heave. If complete dewatering of the ponds is required, the water level should be lowered at such a rate to protect against rapid drawdown effects. Rapid drawdown analysis has not been performed.

The potential for contamination of the aquifer by the retained water is beyond the scope of this report. An assessment by environmental and hydro-geological personnel is recommended.

5. Berms and Flood Protection Dikes

Three types of embankments are required at the site:

- 6.7 m high backstop berms, with a front face slope of 3H:2V
- 4.3 m high side berms, with a front face slope of 3H:2V
- Flood protection dikes, typically less than 1.5 m in height

The stability of the berm slopes was assessed using limit equilibrium slope stability analysis. A design objective factor of safety of 1.3 has been selected, taking into account the low consequence associated with slope instabilities if any. The parameters used in the analysis are summarized in

Table 03. The results of the stability assessment and the berm configurations are presented graphically in Appendix B and summarized in Table 04.

Table 03: Soil Parameters used in Stability Analysis										
Material Friction Angle (°) Cohesion (kPa) Unit Weight (kN/m ³)										
Native Clay	14	5	17							
Compacted Clay Fill	20	5	19							
Sand	32	0	19							

Table 04: Results of Stability Analysis

Case	Calculated FS
Backstop Berm	530
Interior Slope	1.33
Sand Facing ¹	±1.0
Exterior Slope	1.34
Exterior Slope 12 m pond set back - during construction	1.26
Exterior Slope 12 m pond setback - normal pond level	1.31
Side Berm	
Interior Slope	1.31
Exterior Slope	1.37
Exterior Slope 8 m pond set back - during construction	1.23
Exterior Slope 8 m pond setback - normal pond level	1.30

¹Stability of sand facing is near 1.0 because the required 3H:2V slope is near the angle of repose for loose sand.

Settlement of the berms is anticipated due to consolidation and elastic compression. The berm heights have been set so that the required minimum height should be maintained after the settlement has occurred.

The berms should be constructed of compacted clay. Organic soils should be removed beneath the footprint of the berms, and the surface of the sub grade should be scarified and compacted so that it is free of any soft areas. Sub grade improvement will be required under the steep slopes, a sub cut should be excavated to a depth of 0.6 m, and replaced with compacted clay material. The berm fill should be compacted to a minimum 95 percent of the Standard Procter maximum dry density (SPMDD).

If significant deformation (squeezing and bulking) of the subgrade occurs, compaction should be halted and an investigation undertaken to determine the cause of the deformation. If silt or silty material is encountered it should be overexcavated up to 0.75 m and bridged with geotextile and granular fill.

A 1 m thick facing of ballistic sand is required for the first 3 m above final grade, as a backstop behind the targets. This sand facing will be periodically removed and filtered to remove lead bullets. The 3H:2V slope of sand facing will be subject to surface ravelling, slumping, erosion and degradation due

to bullet impacts, precipitation, wind and other factors, and will require periodic maintenance. The 3H:2V facing of the backstop slope is a requirement of firing range design.

Drainage should be provided at the toe of the embankments and along the benches of the side and backstop berms to quickly remove surface water, and prevent any ponding of water on or against the berm.

The flood protection dikes should be constructed of compacted clay and have a minimum slope of 3H:1V and a minimum crest width of 1.5 m. Compaction of these dikes is necessary to provide effective flood protection. The subgrade should be prepared as described above.

6. Slabs-On-Grade

It is understood that a slab-on-grade floor system is preferred for economic and constructability reasons. While a structural floor is considered to provide better performance, a slab on grade floor system may be suitable for lightly loaded buildings where some movement of the floor is acceptable.

Floor slabs may be subjected to some vertical deformation due to swelling or shrinkage of the subgrade soil in response to changes in moisture content. Some settlement and differential settlement may also occur due to floor loading; uneven floor loading may lead to differential settlements. It is understood that the building will be heated during the winter months, and therefore, frost upheaval should not be a concern. The following are guidelines for design and construction of slab-on-grade:

- 1. The top 600 mm of the subgrade beneath the underside of the floor slab should be excavated and if found suitable can be used to backfill the subcut. The backfill should be placed in lift not to exceed 200 mm thick and compacted to a minimum 95 percent of SPMDD.
- 2. Precautions should be taken to prevent desiccation of clay subgrade during construction. If the soil does dry out, it should be dampened, scarified, and re-compacted to a minimum of 95 percent of Standard Proctor maximum dry density.
- 3. Any fill required to bring slab areas to design grade should consist of clean, inorganic material compacted to 95 percent of SPMDD.
- 4. A minimum of 150mm compacted thickness of clean free draining granular fill compacted to 98 percent of SPMDD should underlie the slab.
- 5. A vapour barrier below the slab is recommended, to minimize long term moisture change within the subgrade.
- 6. Competent subfloor drainage system should be provided for any portion of the slab which is constructed below the exterior grade.
- 7. The slab should be isolated from all fixed structural elements.
- 8. Light partitions bearing on the slab should be designed to permit vertical movement between the partition and the ceiling to minimize the possibility of damage if the slab heaves.

- 9. Control joints should be provided in the slab to reduce random cracking.
- 10. A minimum void space of 150 mm should be provided under grade beam system to minimize the effect of local soil movement.

7. Roadwork

The existing dirt road will be upgraded with a gravel surface and increased width to handle the anticipated vehicle types and volumes. The existing road embankment material is considered to be suitable sub-grade material for the upgraded roadway. The design of the pavement structure is being developed by others.

The slopes of the existing embankment should be benched prior to placing additional fill. Any topsoil encountered at the surface should be excavated and removed. The top 300 mm below the subgrade interface should be scarified and compacted to a minimum of 95 percent of SPMDD. If significant deformation (squeezing and bulking) of the subgrade occurs, compaction should be halted and an investigation undertaken to determine the cause of the deformation. If silt or silty material is encountered it should be over excavated up to 0.75 m and bridged with geotextile and granular fill. Side ditches should be provided on both sides to facilitate drainage and protect against saturation of the subgrade or pavement structure.

8. Parking Areas

Parking areas should be stripped of all organic material. The top 300 mm below the subgrade should be scarified and compacted to a minimum of 95 percent of SPMDD. If significant deformation (squeezing and bulking) of the subgrade occurs, compaction should be halted and an investigation undertaken to determine the cause of the deformation. A geotextile should be placed between the subgrade and subbase. The parking lot structure and on-site roadways should consist of 375 mm of granular sub base material, overlain by 150 mm of limestone base course. Parking lot grading should be designed so that surface water drains away from the parking lot, and does not drain or accumulate towards/under the pavement structure.

9. Closure

The findings and recommendations of this report were based on the results of the field and laboratory investigations. If conditions are encountered that appear to be different from those shown by the test holes drilled at this site and described in this report, or the assumptions stated herein are not in keeping with the design, this office should be notified in order that the recommendations can be reviewed and adjusted if necessary.

Soil conditions, by their nature, can be highly variable across a site. A contingency should be included in the construction budget to allow for the possibility of variation in soil conditions, which may result in modification of the design and construction procedures.

Mr. Randy Benoit Page 9 September 19, 2011

Sincerely, AECOM Canada Ltd.

Submitted By:

To dall the

Kendall Thiessen, P.Eng. Geotechnical Engineer

Encl.

Reviewed By:

1

Faris Khalil, P.Eng. Manager, Geotechnical Engineering

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("Consultant") for the benefit of the client ("Client") in accordance with the agreement between Consultant and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations")
- represents Consultant's professional judgement in light of the Limitations and industry standards for the preparation of similar reports
- may be based on information provided to Consultant which has not been independently verified
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued
- must be read as a whole and sections thereof should not be read out of such context
- was prepared for the specific purposes described in the Report and the Agreement
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time

Consultant shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. Consultant accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

Consultant agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but Consultant makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

The Report is to be treated as confidential and may not be used or relied upon by third parties, except:

- as agreed in writing by Consultant and Client
- as required by law
- for use by governmental reviewing agencies

Statement of Qualifications and Limitations

Consultant accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of Consultant to use and rely upon the Report and the Information. Any damages arising from improper use of the Report or parts thereof shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM

Figures

AICOM

Test Hole Location Plan Figure-01

Figure - 02

City of Winnipeg Winnipeg Police Service Headquarters Wyper Road Berms

AECOM

Appendix A

AECOM Canada Ltd.

GENERAL STATEMENT

NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.

Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.

In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

EXPLANATION OF FIELD & LABORATORY TEST DATA

Descriptic				UMA	USCS			Laborator	y Classification Criteria			
		ption	on		Classification	Fines (%)	Fines (%) Grading		Plasticity	Notes		
		CLEAN GRAVELS	Well grade sandy grave or no	ed gravels, els, with little fines	22	GW	0-5		C _U > 4 1 < C _C < 3			
	GRAVEL (More that 50% of	AVELS (Little or no Po pre than fines) sar 0% of		AVELS fines) With the or no fines) Poorly graded gravels, sandy gravels, with little or no fines			GP	0-5		Not satisfying GW requirements		Dual symbols if 5-
OILS	fraction gravel size)	of DIRTY GRAVELS	Silty gravels gra	s, silty sandy vels		GM	> 12			Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols if above "A" line and	
AINED SC		(With som fines)	e Clayey gra sandy	vels, clayey gravels		GC	> 12			Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>	
ARSE GR		CLEAN SANDS	Well grad gravelly san or no	ed sands, ds, with little fines		SW	0-5		C _U > 6 1 < C _C < 3		$C_{U} = \frac{D_{60}}{D_{10}}$	
COP	SANDS (More that 50% of	(Little or n fines)	(Little or no fines) Poorly graded sands, gravelly sands, with little or no fines		000	SP	0-5		Not satisfying SW requirements		$C_C = \frac{(D_{30})^2}{D_{10} x D_{60}}$	
	coarse fraction sand siz	of e) DIRTY SANDS	Silty s sand-silt	ands, mixtures		SM	> 12			Atterberg limits below "A" line or W _P <4		
		(With som fines)	Clayey sands, sand-clay mixtures			SC	> 12			Atterberg limits above "A" line or W _P <7		
	SILTS (Below ' line	, W _L <50	Inorganic s clayey fine slight p	ilts, silty or sands, with lasticity		ML						
	negligib organic content	e W _L >50	Inorganic s plas	Inorganic silts of high plasticity		МН						
SOILS	CLAYS	W _L <30	Inorganic clays, silty clays, sandy clays of low plasticity, lean clays			CL						
GRAINED	(Above) line negligibl organic	30 <wl<50 and="" clays="" inorganic="" silty<br="">clays of medium plasticity</wl<50>			CI				Classification is Based upon Plasticity Chart			
FINE (content	W _L >50 Inorganic clays of high plasticity, fat clays		lays of high fat clays	\mathbb{Z}	СН						
	ORGAN SILTS &	C W _L <50	Organic organic silty plas	silts and clays of low ticity		OL						
	(Below ' line)	^{∧'} W _L >50	W _L >50 Organic clays of high plasticity		11	ОН						
H		GAINIC SOILS	Peat and organ	other highly c soils		Pt	Cla	Vor assific	n Post cation Limit	Strong colour o fibrou	r odour, and often s texture	
		Asphalt			Till							
		Concrete		E (Undi	Bedrock fferentiated)					AE	COM	
×	\bigotimes	Fill		E (Li	Bedrock mestone)							

When the above classification terms are used in this report or test hole logs, the designated fractions may be visually estimated and not measured.

LEGEND OF SYMBOLS

Laboratory and field tests are identified as follows:

- qu undrained shear strength (kPa) derived from unconfined compression testing.
- T_v undrained shear strength (kPa) measured using a torvane
- pp undrained shear strength (kPa) measured using a pocket penetrometer.
- L_v undrained shear strength (kPa) measured using a lab vane.
- F_v undrained shear strength (kPa) measured using a field vane.
- γ bulk unit weight (kN/m³).
- SPT Standard Penetration Test. Recorded as number of blows (N) from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 51 mm O.D. Raymond type sampler 0.30 m into the soil.
- DPPT Drive Point Pentrometer Test. Recorded as number of blows from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 50 mm drive point 0.30 m into the soil.
- w moisture content (W_L, W_P)

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Su (kPa)	CONSISTENCY
<12	very soft
12 – 25	soft
25 - 50	medium or firm
50 - 100	stiff
100 - 200	very stiff
200	hard

The resistance (N) of a non-cohesive soil can be related to compactness condition as follows

	COMPACTNECC
N – BLOWS/0.30 M	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50	very dense

PROJ	ECT:	Wyper Road Firearms Training Facility	С	LIEN	IT: W	innipeg Police Services TESTHOLE NO: TH11-04	1
LOCA	TION	: On Wyper Road - N 5518744.62 / E 620169.31				PROJECT NO.: 60162215	5
CONT	RAC	TOR: Maple Leaf Drilling Ltd.		<u>1ETH</u> 1spli	OD: T SPO	Acker MP-5 125 mm SSA ELEVATION (m): 237.39	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ◆ Dynamic Cone ◇ + Torvane + ◆ SPT (Standard Pen Test) ◆ □ Lab Vane □ 0 20 40 60 80 100 ● Total Unit Wt ■ ○ △ Pocket Pen. △ ○ <td< td=""><td>ELEVATION</td></td<>	ELEVATION
0	\bowtie	\TOPSOIL- organic, black, dry \CLAY (Fill) - silty. trace sand, trace gravel, grey, dry \CLAY (Fill) - silty. trace sand, trace gravel, grey, dry					
- - - - - - 1 - - -		CLAY - silty - brown, moist, stiff - high plasticity		G1 G2			237
-2		- firm below 2.4 m					235 -
3		- dark brown below 3.1 m		G3			234 -
- - - - - - - - - - - - - - - - - - -		- soft below 4.3 m - brown to grey below 4.6 m		G4			233 -
				G5			232 -
		END OF TEST HOLE AT 6.1 m BELOW GROUND SURFACE IN CLAY. Notes: 1. No sloughing observered during drilling. 2. No seepage observed.					231 -
		completion.					230 -
							229 -
							228 -
							227 - 226 -
							225
		AECOM				LOGGED BY: M. Akhtar COMPLETION DEPTH: 6.10 m REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/3/11 PROJECT ENCINEER: Kondall Thissan	
1						PROJECT ENGINEER: Kendali Thiessen Page 1	i ot 1

PROJE	CT:	Wyper Road Firearms Training Facility	С	LIEN	IT: W	/innipeg Police Services TESTHOLE NO: TH11-05	5
LOCAT	ION	: On Wyper Road - N 5518741.28 / E 619969.03	_			PROJECT NO.: 60162215	5
CONTR		TOR: Maple Leaf Drilling Ltd.	N	1ETH	OD:	Acker MP-5 125 mm SSA ELEVATION (m): 237.55	
DEPTH (m)		SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	ON BULKNO RECOVERYCORE	ELEVATION
= 0		TOPSOIL - organics, black, dry	1				
		CLAY (Fill) - slity, trace sand, trace gravel, trace rootiets, grey, \dry/ CLAY - silty/ - grey, moist, stiff - high plasticity		G6			237 -
-2		- trace rootlets - soft below 1.2 m		G7			236 -
				G8			235 -
4		- dark drown below 3.1 m					234
		- soft below 4.9 m		G9			233
6		- brown to grey below 5.6 m		G10			232
		END OF TEST HOLE AT 6.1 m BELOW GROUND SURFACE IN CLAY. Notes: 1. No sloughing observered during drilling. 2. No seepage observed. 3. Test hole backfilled with bentonite and auger cuttings upon					231 -
		completion.					230
9							229
10							228
							227
12							226
- 12.5			<u> </u>			LOGGED BY: M. Akhtar COMPLETION DEPTH: 6.10 m	
		AECOM				REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/3/11 PROJECT ENGINEER: Kendall Thiessen Page 1	l of 1

PROJECT	Wyper Road Firearms Training Facility	С	LIEN	IT: W	Vinni	beg P	olice	e Serv	/ices				TES	STHOLE NO: TH11-0	16
	1.									PR	PROJECT NO.: 60162215				
			<u>1ЕТН</u> 1ерн	OD:		er MP	-5 12	<u>25 m</u> 111 k	m SS	SA				<u>=VATION (m): 237.82</u>	
DEPTH (m) SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	• S	PENETF	RATION Becker amic C ndard I ws/300 0 6 ial Unit (kN/m ³ 3 19 MC 0 6	N TESTS r ₩ Cone Pen Te Dmm) 60 8 t Wt 9 20 Liquia	st) ◆ 0 100 0 21	UNDRA	INED SH + Tor ∠ C □ Lab △ Pocka ♥ Field (k	IEAR STR vane + 2U × Vane □ et Pen. △ Vane ⊕ Pa)	ENGTH	COMMENTS	ELEVATION
	TOPSOIL - organics, black, dry					÷····					·····				
	CLAY (Fill) - silty, trace sand, trace gravel, trace rootlets, black,					÷									
	CLAY - silty - black, dry, very stiff to soft - high plasticity - trace rootlets - trace rootlets		G11 G12							· · · · · · · · · · · · · · · · · · ·					237 -
	- brown firm below 1.8 m									•••••					236 -
	- brown, inni below 1.6 m		C12							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			235 -
	- brown to light grey below 3.7 m		GIS							· · · · · · · · · · · · · · · · · · ·					234 -
5			G14			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					233 -
	- dark brown, soft below 5.5 m END OF TEST HOLE AT 6.1 m BELOW GROUND SURFACE IN		G15				•		•••••	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			232 -
- - - - - - - - - - - - - - - - - - -	 CLAY. Notes: 1. No sloughing observered during drilling. 2. No seepage observed. 3. Test hole backfilled with bentonite and auger cuttings upon completion. 									· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			231 -
8										· · · · · · · · · · · · · · · · · · ·					230 -
5 9 9						·····				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			229 -
5										· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			228 -
															227 -
										· · · · · · · · · · · · · · · · · · ·					226 -
12.5												·····			
					LO		BY: ים ח=	M. Al	khtar ndall	Thiocr	Son		OMPLE	ETION DEPTH: 6.10 m	
					PR				ER: P	Kendal	I Thies	sen	JIVIPLE	Page	1 of 1

PROJECT: Wyper Road Firearms Training Facility				T: W	/innipeg Police Services TESTHOLE NO: TH11-07	TESTHOLE NO: TH11-07		
CONTRAC	TOR: Maple Leaf Drilling Ltd.	M	IFTH	0D·	Acker MP-5 125 mm SSA FI FV/ATION (m)· 236 92	3		
SAMPLE T]SPLI	T SPO				
DEPTH (m) SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ★ Becker ★ + Torvane + ♦ Dynamic Cone ♦ × QU × • SPT (Standard Pen Test) ♦ □ Lab Vane □ 0 20 40 60 80 100 ■ Total Unit Wt ■ △ Pocket Pen. △ ④ Field Vane ● (kPa) ● Field Vane ● 16 17 18 19 20 21 (kPa) ● 50 100 50 100 150 200	ELEVATION		
E 0	TOPSOIL - organics, black, dry							
	 - black, moist, firm to stiff - high plasticity - trace rootlets - brown to light grey below 2.3 m 		G16 T1			236 - 235 -		
-4	- firm below 4.3 m		G16 G17			234 - 233 -		
			T2 G18 G19			232 - 231 -		
1/191/6 L02/NN	- soft to very soft below 7.0 m		G20 T3			230 - 229 -		
LER RD GPJ UMA WI BCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	- brown, moist, compact - low to intermediate plasticity - becoming very dense with depth		G21 S26	50/ 51mm	- 50 blows / 50 mm	228 -		
	 SILT (Till). Notes: No sloughing observered during drilling. Seepage observed below 8.0 m. Water level at 2.6 m below ground at the end of drilling. Test hole backfilled with bentonite and auger cuttings upon completion 					227 - 226 -		
11 11 10 10 10 10 10 10 10 10						220 -		
	A=COM				LOGGED BY: M. Akhtar COMPLETION DEPTH: 9.45 m	COMPLETION DEPTH: 9.45 m		
000	A=COM				PROJECT ENGINEER: Kendall Thiessen COMPLETION DATE: 8/3/11 PROJECT ENGINEER: Kendall Thiessen Page 1	COMPLETION DATE: 8/3/11 Page 1 of 1		

LOCATION: N 5518881.09 / E 619514.45 CONTRACTOR: Maple Leaf Drilling Ltd. SAMPLE TYPE GRAB METHOD: Acker MP-5 125 mm SSA BACKFILL TYPE BENTONITE GRAVEL W PENETATION TESTS UNDRAINED SHEAH Howards CONTRACTOR: Maple Leaf Drilling Ltd. METHOD: Acker MP-5 125 mm SSA SAMPLE TYPE GRAVEL SLOUGH PENETRATION TESTS UNDRAINED SHEAH Howards OPENATION TESTS UNDRAINED SHEAH	PROJECT NO.: 60162215 ELEVATION (m): 237.00 O RECOVERY Increase UTTINGS SAND R STRENGTH he + × ne □ pen. △ COMMENTS
CONTRACTOR: Maple Leaf Drilling Ltd. METHOD: Acker MP-5 125 mm SSA SAMPLE TYPE GRAB SHELBY TUBE SPLIT SPOON BULK NC BACKFILL TYPE BENTONITE GRAVEL SLOUGH GROUT CL U PENETRATION TESTS UNDRAINED SHEAK H Torvan U PENETRATION TESTS UNDRAINED SHEAK	ELEVATION (m): 237.00 O RECOVERY Image: Correst constraints UTTINGS Image: Rest constraints R STRENGTH he + × ne □ Pen. Δ
SAMPLE TYPE GRAB SHELBY TUBE SPLIT SPOON BULK Int BACKFILL TYPE BENTONITE GRAVEL SLOUGH GROUT CL U PENETRATION TESTS UNDRAINED SHEAR	UTTINGS SAND
BACKFILL TYPE BENTONTE C. GRAVEL UIISLOUGH BENTONTESTS UNDRAINED SHEAL	R STRENGTH re + × ne □ Pen. △ COMMENTS
Image: Sector	R SIRENGIN he + × he □ Den. Δ COMMENTS
Image: Solid performance on the system Solid performance on the system XQUX Image: Solid performance on the system Solid performance on the system Solid performance on the system XQUX Image: Solid performance on the system XQUX Image: Solid performance on the system	ane ●
0 2322 TOPSOIL - rootlets, black, dry	
CLAY - silty - black, moist - high plasticity - trace rootlets - light grey below 2.3 m - 3 - 3 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	236 - 235 - 234 -
- brown below 3.8 m - firm below 4.0 m, becoming soft with depth - grey below 5.3 m	233 -
	231 -
	230 -
SILT- (Till) - silty, trace sand, trace gravel - brown, moist, loose - brown, moist, loose - low plasticity - low plasticity - low plasticity	228 -
AUGER REFUSAL AI 9.00 m BELOW GROUND SURFACE IN SILT (Till). Notes: 1. No sloughing observered during drilling. 2. Seepage observed below 7.8 m. Water level at 2.4 m below ground at end of drilling. 3. Justalled 25 mm diameter standaires piezometer well at	227 -
S. Installed 25 mm diameter standpipe plezometer well at 9.6 m. Complete with 1.5 m of screen and 1.1 m stick up, and flush-mount cover. Backfilled with sand to 7.77 m and bentonite to surface. Water level at el. 235.422 m on August 10, 2011. How the surface is the surfa	226 -
	COMPLETION DEPTH: 9.60 m
PROJECT ENGINEER: Kendall Thiessen	n Page 1 of 1

PROJ	JECT:	Wyper Road Firearms Training Facility	CLIENT: Winnipeg Police Services TESTHOLE NO: TH1)9
LOCA	TION	: N 5518863.36 / E 619505.73						PROJECT NO.: 60162215		
CON	TRAC	TOR: Maple Leaf Drilling Ltd.	Ν	<u>IETH</u>	IOD:	Acker MP-5 125 mm S	SA	ELI	EVATION (m): 237.03	}
SAMF	<u>PLE T</u>	YPE GRAB IIISHELBY TUBE		SPL	IT SPO			RECOVE	RY CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	UNDRAINED SHEAR + Torvane × QU × □ Lab Vane A Pocket Per Field Vane (kPa) 50, 100	STRENGTH + □ 1. △ • ●	COMMENTS	ELEVATION
- 0		TOPSOIL - organics, rootlets, black, dry								-
-1		CLAY - silty - dark grey, moist, stiff - high plasticity		G33 T7		•				236 - 235 -
3 3 ₹		- trace silt inclusion [<10 mm] - firm below 2.7 m		G34						234 - ¥
-4		- brown below 3.8 m		G35						233 -
		- grey below 5.3 m		T8 G36						232 -
		- becoming soft below 8 m		G37 T9		•				230 - 229 -
		SILT- (Till) - silty, some clay, trace sand, trace gravel - dark brown, moist, loose to dense - low plasticity AUGER REFUSAL AT 9.75 m BELOW GROUND SILT (Till).		G38 S39	49	•			- 8, 36, 13 blows/150 mm	228 -
		 Notes: 1. No sloughing observered during drilling. 2. Seepage observed below 9.8 m. Water table at 3.35 m below ground. 3. Test hole backfilled with bentonite and auger cuttings upon completion. 								227 -
<u> </u>							·····			
5		ΔΞΟΟΜ				REVIEWED BY: M. Akhtar	Thiessen		ETION DEPTH: 9.75 m ETION DATE: 8/3/11	
20				PROJECT ENGINFER: Kendall Thiessen COWPLETION DATE: 8/3/11						
- <u> </u>										

PROJECT: Wyper Road Firearms Training Facility	С	CLIENT: Winnipeg Police Services TESTHOLE NO: TH11							
CONTRACTOR: Maple Leaf Drilling Ltd				PROJECT NO.: 6016221	5				
			IT SPO						
SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS WNDRAINED SHEAR STRENGTH ★ Becker ★ Opmanic Cone ◇ ◆ SPT (Standard Pen Test) (Blows/300mm) 0 20 40 60 80 100 ■ Total Unit Wt ■ Field Vane ● (kPa) COMMENTS	ELEVATION				
0 TOPSOIL - organics, rootlets	_			20 40 60 80 100 50 100 150 200					
CLAY - silty - greyish brown, dry, stiff - high plasticity		G40		•	236 -				
² light arou to grow brown below 2.3 m					Z35 -				
- firm to soft below 2.7 m		G41A			_ _ 234 -				
4		G41B G42			233 - 232 -				
- grey below 5.5 m		G43			231 -				
		G44			230 - 229 -				
 SILT- (Till) - silty, trace to some sand, trace to some gravel brown to light grey, moist, loose to compact 9 HIMA Inv plasticity END OF TEST HOLE AT 9.14 m BELOW GROUND SURFACE IN SILT (Till). 		G45			228 -				
Notes: 1. No sloughing observered during drilling. 10 2. Seepage observed in till. Water level at 2.4 m below ground at end of drilling. 3. Test hole backfilled with bentonite and auger cuttings upon completion.					227 -				
					226 - 225 -				
				LOGGED BY: M. Akhtar COMPLETION DEPTH: 9.14 m					
				REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/4/11	1 of 1				

PROJ	ECT:	Wyper Road Firearms Training Facility	С	LIEN	IT: W	/innipeg Police Services TESTHOLE NO: TH11-11	1
		: N 5519002.05 / E 619581.4			00	PROJECT NO.: 60162215	5
SAME				I <u>E I H</u> Ispli	<u>UD:</u> T SPO	ACKER MP-5 125 mm SSA ELEVATION (M): 230.04 ION ⊟BULK ⊠NO RECOVERY ■CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS ★ Becker ★ ◆ Dynamic Cone ◆ ◆ SPT (Standard Pen Test) ◆ (Blows/300mm) 0 20 40 60 80 100 ▲ Total Unit Wt (kN/m ³) 16 17 18 19 20 21 (kPa) 10 50 100 50 100 50 100 50 200	ELEVATION
_ 0		TOPSOIL - organics, rootlets					
-1 1 2		CLAY - silty - light grey, dry, stiff to soft - high plasticity - trace rootlets - becoming firm to soft below 2.1 m		G46			236 - 235 -
⊥ 3				G47			234 - 233 -
- - - - - - - - - - - - - - - - - - -		- grey below 5.3 m		G48			232 - 231 -
1/ 1/11/11/11/11/11/11/11/11/11/11/11/11				G50			230 - 229 -
11 00 00 00 00 00 00 00 00 00 00 00 00 0		SILT- (Till) - silty, trace to some sand, trace to some gravel - brown, moist, very soft - low plasticity AUGER REFUSAL AT 8.84 m BELOW GROUND SURFACE IN SILT (Till). Notes: 1. No sloughing observered during drilling. 2. Seepage observed below 8.5 m. Water level at 2.4 m below ground at end of drilling. 3. Test hole backfilled with bentonite and auger cuttings upon completion.		G51			228 - 227 - 226 -
C OF 1EST HOLE 601622		AECOM				LOGGED BY: M. Akhtar COMPLETION DEPTH: 8.84 m REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/4/11	225 -
Ō						PROJECT ENGINEER: Kendall Thiessen Page 1	1 of 1

PROJ	ROJECT: Wyper Road Firearms Training Facility					IT: W	/innipeg P	TES	STHOLE NO: TH11-1	2		
LOCA	ATION: N 5	519032.99 / E 619527.39							PR	PROJECT NO.: 60162215		
CON	IRACIOR:	Maple Leaf Drilling Ltd.		<u>N</u>		IOD:	Acker MP	<u>-5 125 mm S</u>	SA		EVATION (m): 236.80)
SAIM		GRAB					ION			TTINCO		
BACK		BENTONITE	GRAVEL	_ш	IISLO T	UGH				THNGS	SAND	
DEPTH (m)	SOIL SYMBOL	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENEIF	AATION TESTS Becker ¥ amic Cone vs/300mm) 0 60 80 10 0 60 80 10 19 20 2 MC Liquid ● 60 40 10 0 10 10 10 0 10 10 10 0	UNDRAINED SHEAR + Torvane X QU X Lab Van O A Pocket Pe Field Van 1 (kPa)	s SIRENGIH s + c e □ en. Δ ie ● 450 - 200	COMMENTS	ELEVATION
_ 0		TOPSOIL - organics, rootlets, b	lack, dry	+			20 4					=
- - - - - - - -		CLAY - silty - light grey to brown, moist, stiff - intermediate to high plasticity			G52							236
-2				X	T10							235
3 		- firm below 3.0 m, becoming sc	ft with depth		G53			•				234
-4 		- grey with trace silt inclusions [·	<15 mm] below 3.8 m		G54			•				233
5 		- trace gravel below 4.8 m			G55			•				231
					G56							230
GPJ UMA WINN.GD		SILT- (Till) - silty, trace sand, tra - brown, moist, loose	ace gravel		657							229
068 - WYPER RC 0111111111111111111111111111111111111		ALIGER REFLISAL AT 10.2 m	RELOW GROLIND									227
60162215 BOREHOLE I 111111111111111111111111111111111111		SURFACE IN SILT (Till). Notes: 1. No sloughing observered dur 2. Seepage observed below 8.7 below below ground at end of d 3. Installed 25 mm diameter sta 10.2 m. Complete with 1.5 m o	ing drilling. 7 m. Water level at 2.1 m rilling. ndpipe piezometer well at f screen and 1.1 m stick d with sgand to 8.20 m cod									226
		bentonite to surface. Water leve	el at el. 235.26 m on									
12.5		August 10, 2011.							·····	····;·····		
OF TE		ΔΞΟΟΜ						BY: M. Akhtar	l Thiessen		TION DEPTH: 10.21 m	
FOG							PROJECT	<u>ENGINEER</u> :	Kendall Thiesser		<u>Page</u>	1 of 1

PROJ	ECT:	Wyper Road Firearms Training Facility	С	LIEN	IT: W	innipeg Police Services TESTHOLE NO: TH11-13	3		
LOCA	TION	: N 5519002.89 / E 619467.19				PROJECT NO.: 60162215	PROJECT NO.: 60162215		
CONT	RAC	TOR: Maple Leaf Drilling Ltd.	N	<u>IETH</u>	OD:	Acker MP-5 125 mm SSA ELEVATION (m): 236.92			
SAMP	LET		\square	SPLI	T SPO				
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ★ Becker ★ + Torvane + ◆ Dynamic Cone ◇ × QU × ● SPT (Standard Pen Test) ◆ □ Lab Vane □ 0 20 40 60 80 100 ■ Total Unit Wt ■ △ Pocket Pen. △ ● Field Vane ● 100 ■ Field Vane ● 16 17 18 19 20 21 (kPa) Plastic MC Liquid = 50 100 150 200	ELEVATION		
_ 0		TOPSOIL - rootlets							
- - - - - - - - - - - - - - - - - - -		CLAY - sily - light grey to grey, dry, stiff - intermediate plasticity - brown below 1.1 m		G58			236 -		
2 2 				G59		•	235 - 234 -		
-4				G60			233 - 232 -		
		- dark grey to grey, firm below 5.33 m		G61			231 -		
11/91/91/91/91/91/91/91/91/91/91/91/91/9		- soft below 6.8 m		G62			230 - 229 -		
		SILT- (Till) - silty, trace sand, trace gravel - light grey to grey, moist, loose - low plasticity AUGER REFUSAL AT 9.14 m BELOW GROUND SURFACE IN SILT (Till). Notes:		G63			228 -		
10 11 11 11 11		 No sloughing observered during drilling. No seepage observed. Test hole backfilled with bentonite and auger cuttings upon completion. 					227 - 226 -		
1279109 100109 100111 12.5							225 -		
# 5		ATCOM				LOGGED BY: M. Akhtar COMPLETION DEPTH: 9.14 m	-		
000						PROJECT ENGINEER: Kendall Thiessen Page 1	1 of 1		

PROJ	ECT:	Wyper Road Firearms Training Facility	С	LIEN	IT: W	/innipeg Police Services TESTHOLE NO: TH11-14	4
LOCA	TION	: N 5518907.81 / E 619467.19				PROJECT NO.: 6016221	5
CONT				<u>/IETH</u> Лерн		Acker MP-5 125 mm SSA ELEVATION (m): 237.08	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS ★ Becker # ◆ Dynamic Cone ◇ ◆ SPT (Standard Pen Test) (Blows/300mm) 0 20 40 60 80 100 Total Unit Wt ■ (KNm ³) 16 17 18 19 20 21 Plastic MC Liquid 20 40 60 40 40 50 100 50 200 COMMENTS	ELEVATION
= 0	<u> </u>	TOPSOIL - rootlets, black to grey, dry					237
		CLAY - silty - black, moist, stiff - high plasticity - trace organics - trace silt inclusions -brown, firm to soft below 1.8 m		G64			236
3				G65			235 • • 234
-4 				G66			233 232
6				G67			231
-7		- dark grey below 6.8 m		G68			230 229
9		SILT- (Till) - clayey, trace sand, trace gravel - brown to light grey, moist, soft - low to intermediate plasticity END OF TEST HOLE AT 9.1 m BELOW GROUND SURFACE IN SILT (Till). Notes: 1. No sloughing observered during drilling.		G69			228
		 Seepage observed below 8.5 m. Water level at 2.7 m below ground surface at end of drilling Test hole backfilled with bentonite and auger cuttings upon completion. 					227 226
						LOGGED BY: M. Akhtar COMPLETION DEPTH: 9.14 m	225
		A=COM				REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/4/11 PROJECT ENGINEER: Kendall Thiessen Page	1 of
L							1 01

PROJE	CT:	Wyper Road Firearms Training Facility	С	LIEN	T: W	/innipeg Police Services TESTHOLE NO	D: TH11-15		
LOCAT	ION	: N 5518777.37 / E 619656.19				PROJECT NO	PROJECT NO.: 60162215		
CONT	RAC	TOR: Maple Leaf Drilling Ltd.	N	IETH	OD:	Acker MP-5 125 mm SSA ELEVATION (r	n): 237.04		
SAMPL	ET			SPLI	T SPO		ORE		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ★ Becker # + Torvane + ◆ Dynamic Cone ◇ + Torvane + ◆ SPT (Standard Pen Test) ◆ □ Lab Vane □ 0 20 40 60 80 100 ● Total Unit Wt ● ○ A Pocket Pen. Δ ● Field Vane ● 16 17 18 19 20 21 (kPa) 20 40 60 80 100 50 100 150 200	ENTS STN3		
= 0		TOPSOIL							
-1-1		CLAY - silty - grey, moist, very stiff - intermediate to high plasticity END OF TEST HOLE AT 1.52 m BELOW GROUND SURFACE IN CLAY. Notes:		G112 G113			236 -		
		 No sloughing observered during drilling. No seepage observed. Test hole backfilled with bentonite and auger cuttings upon completion. 					234 -		
-4							233 -		
6							231 -		
7							230 -		
9							229 -		
							227 -		
							226 -		
- 12.3			<u> </u>	1		LOGGED BY: M. Akhtar COMPLETION DEPTI	H: 1.52 m		
0		AECOM				REVIEWED BY: Kendall Thiessen COMPLETION DATE:	8/4/11		
김						PROJECT ENGINEER: Kendall Thiessen	Page 1 of 1		

PROJ	ECT:	Wyper Road Firearms Training Facility	С	LIEN	IT: W	innipeg Police Services TESTHOLE NO: TH11-1	7
LOCA	TION	I: N 5518849.3 / E 619634.84				PROJECT NO.: 6016221	15
CONT	RAC	TOR: Maple Leaf Drilling Ltd.	N	<u>1ETH</u>	OD:	Acker MP-5 125 mm SSA ELEVATION (m): 236.92	<u>}</u>
SAMF	LE T		$ \square $	SPLI	T SPC		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ★ Becker # + Torvane + ◆ Dynamic Cone ◇ × QU × ● SPT (Standard Pen Test) ◆ □ Lab Vane □ 0 0 0 0 0 0 0 ■ Total Unit Wt ■ △ △ Pocket Pen. △ ↔ Field Vane ● △ ↔ Field Vane ● ↓ 16 17 18 19 20 21 ↓ ↓ ↓ ↓ Plastic MC Liquid 50 100 150 200 200	ELEVATION
_ 0			1				
-1-2-2		CLAY - silty - dark grey, moist, very stiff - becoming firm with depth - intermediate to high plasticity - trace rootlets - grey to brown below 1.5 m - soft below 2.4 m		G114 G115			236 - 235 -
3		END OF TEST HOLE AT 3.04 m BELOW GROUND SURFACE IN CLAY.		G116			234 -
-4		Notes: 1. No sloughing observered during drilling. 2. No seepage observed. 3. Test hole backfilled with bentonite and auger cuttings upon completion.					233 -
							232 -
							230 -
							229 -
- WYPEK RUGE							228 -
							221 -
							225 -
<u> </u>						I OGGED BY: M Akhtar COMPLETION DEPTH: 3.05 m	L
5		AECOM				REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/4/11	
LC C						PROJECT ENGINEER: Kendall Thiessen Page	1 of 1

PROJ	ECT:	Wyper Road Firearms Training Facility	С	LIEN	IT: W	/innipeg	g Police Services	;	TES	STHOLE NO: TH11-2	20
		: N 5518907.53 / E 619643.85	1.	PROJECT NO.: 6							15
SAME				<u>1ЕТН</u> 1 ₉ рп	OD: T SPO	Acker I	MP-5 125 mm SS			\pm VATION (m): 236.93	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PEN ◆ SPT (0 20 16 17 Plas 20	JETRATION TESTS #Becker # Dynamic Cone ◊ Standard Pen Test) ♦ Blows/300mm) 40 60 80 100 Total Unit Wt ■ (kN/m) 18 19 20 21 tic MC Liquid 40 60 80 100	UNDRAINED SHEAR S + Torvane - ×QU × □ Lab Vane △ Pocket Pen ♥ Field Vane (kPa) 50 100	TRENGTH + . △ ●	COMMENTS	ELEVATION
- 0 - 1 - 1 - 2 		TOPSOIL - black, dry CLAY - silty - grey to black, moist, stiff, becoming firm with depth - intermediate to high plasticity - trace silt inclusions - brown below 2.2 m - brown to grey below 5.3 m END OF TEST HOLE AT 6.1 m BELOW GROUND SURFACE IN CLAY. Notes: 1. No clouching observated during drilling		G77 G78 G79				50 100			236 - 235 - 234 - 233 - 232 - 231 -
11110E 6015215 BOREHOLE LOGS - WYPERKINGSPU UMA WINNING 11 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		 No sloughing observered during drilling. No seepage observed. Test hole backfilled with bentonite and auger cuttings upon completion. 									230 - 229 - 228 - 227 - 226 - 225 -
IG OF TEX		AECOM				LOGG REVIE	ED BY: M. Akhtar WED BY: Kendall	Thiessen	COMPLE	ETION DEPTH: 6.10 m ETION DATE: 8/4/11	
3						PROJ	ECT ENGINEER: 1	Kendall Thiessen		Page	1 of 1

PROJ	ECT:	Wype	er Road Firearms Training	Facility	С	LIEN	IT: W	/innip	eg Police Services	3	TES	STHOLE NO: TH11-2	21
LOCA	TION:	N 55	518966.88 / E 619614.31								PR	OJECT NO.: 601622	15
CONT	RACT	OR:	Maple Leaf Drilling Ltd.		N	1ETH	IOD:	Acke	r MP-5 125 mm S	SA	ELE	EVATION (m): 236.94	}
SAMP	PLE TY	′PE	GRAB			SPL	IT SPO	ON	BULK		ECOVEF		
BACK	FILL T	YPE	BENTONITE	GRAVEL	_Ш	USLO	UGH	1	GROUT		TINGS	SAND	T
DEPTH (m)	SOIL SYMBOL	T	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SP 0 2 16 17 P	ENETRATION TESTS	UNDRAINED SHEAR S + Torvane + × QU × □ Lab Vane [△ Pocket Pen. ♥ Field Vane ((kPa)	TRENGTH - □ △ ₽	COMMENTS	ELEVATION
_ 0	<u> </u>		TOPSOIL - rootlets					2		50 100	150 200		=
-1-2-2-3		_ _	- black, dry CLAY - silty - grey to black, moist, stiff to so - intermediate to high plasticity	oft		G81							236
4			- mottled brown and light grey	below 3.8 m		G83							233 -
6			- grey below 5.2 m - soft below 5.5 m			G84							231 -
N.GDT 9/16/11													230 -
			SILT (Till) - some clay, some s - light grey, compact, low plast	and. trace gravel icity									
OLE LOGS - WYPER RD.GF 01 01 0			AUGER REFUSAL AT 8.8 m B SURFACE IN SILT (Till). Notes: 1. No sloughing observered du 3. Seepage observed from till. ground surface at end of drillin 4. Installed 25 mm diameter st 8.8 m. Complete with 1.5 m of flush-mount cover. Backfilled	BELOW GROUND wing drilling. Water level at 2.1 m below g. andpipe piezometer well at f screen and 1.0 m stick up with sand to 7.01 m and									228
НОГЕ 60162215 ВОКЕН 11			bentonite to surface. Water le 10, 2011.	vei at el. 235.30 on August									226
F TE	I	I						LOC	GED BY: M. Akhtar	(COMPLE	TION DEPTH: 8.84 m	
000			A=COM	I				REV PRC	IEWED BY: Kendall	Thiessen (Kendall Thiessen	COMPLE	ETION DATE: 8/4/11 Page	1 of 1

LICOLATION: MSB/02.471/E 619512.2 PROJECT VIEW PROJE	PROJ	ECT:	Wyper Road Firearms Training Facility	С	LIEN	IT: W	innipeg Police Services TESTHOLE NO: TH11-22	
CONTRACTOR: Megle Led Polining Ltd. METHOD: Addre MP-6 126 nm SSA. ELEVATION (m): 268-7 SAMPLE TYPE Grave Contraction of the C	LOCA	TION	: N 5518792.47 / E 619512.2				PROJECT NO.: 60162215	j
SAMPLE TYPE Grad SetLer Yute Solution Balance Dote:Confer() Dote:Confer() <thdote:confer()< th=""> Dote:Confer() <thdo< td=""><td>CONT</td><td>RAC</td><td>TOR: Maple Leaf Drilling Ltd.</td><td>Ν</td><td>1ETH</td><td>OD:</td><td>Acker MP-5 125 mm SSA ELEVATION (m): 236.79</td><td></td></thdo<></thdote:confer()<>	CONT	RAC	TOR: Maple Leaf Drilling Ltd.	Ν	1ETH	OD:	Acker MP-5 125 mm SSA ELEVATION (m): 236.79	
End SOIL DESCRIPTION U	SAMP	LET	YPE GRAB SHELBY TUBE		SPLI	T SPC		
0 833 10F800-regrets, black, dy -pry to black, mols, still -pry to black, mols, still -pry to black, mols, still -provide black brown to grey bolow 1.5 m 266 238 -1	DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ★ Becker ★ + Torvane + ◆ Dynamic Cone ◆ × QU × ● SPT (Standard Pen Test) ◆ □ Lab Vane □ 0 20 40 60 80 100 ■ Total Unit Wt ■ △ Pocket Pen. △ △ Pocket Pen. △ ● Field Vane ● (kPa) 16 17 18 19 20 21 (kPa) 0	ELEVATION
CLV-vily CV <	_ 0	****	TOPSOIL - organics, black, dry					
-3	-1-1-2		CLAY - silty - grey to black, moist, stiff - intermediate to high plasticity - trace silt inclusions [<10 mm], trace rootlets - becoming firm with depth below 1.5 m		G85			236 - 235 -
4 Notes: No souping observed during driling.			- dark brown to grey below 2.2 m END OF TEST HOLE AT 3 m BELOW GROUND SURFACE IN		G87			234 -
5 232 6 231 7 230 8 229 9 228 10 227 11 226 12 225 LOGGED BY: M. Akhtar COMPLETION DEPTH: 3.05 m. REVIEWED BY: M. Kendl Thiesen Date 1 of	- - - - - - 4 - - - - - -		 Notes: 1. No sloughing observered during drilling. 2. No seepage observed. 3. Test hole backfilled with bentonite and auger cuttings upon completion. 					233 -
6 231 7 230 8 229 9 228 10 227 11 226 12 225 12 225 POLIECT ENSIDEER: Kendal Thiesen COMPLETION DEPTH: 3.05 m COMPLETION DEPTH: 3.05 m COMPLETION DEPTH: 3.05 m PROJECT ENSIDEER: Kendal Thiesen COMPLETION DEPTH: 3.05 m PROJECT ENSIDEER: Kendal Thiesen Depared 1 of	- 5 							232 -
7 230 8 229 9 228 10 227 11 226 12 226 12 226 12 226 12 226 12 226 12 226 12 226 12 226 12 226 12 226 12 226 12 226 12 226 12 226 12 226 13 226 14 226 15 00MPLETION DEPTH: 305 m REVIEWED BY: Makhar COMPLETION DATE: 8/4/11 PROJECT ENGINEERAIL Thiessen Depage 1 of								231 -
8 229 9 228 10 227 11 226 12 225 13 14 14 15 15 225 16 225 17 225 18 225 19 225 10 225 <tr< td=""><td>- - - - - - - - - - - - - - - - - - -</td><td></td><td></td><td></td><td></td><td></td><td></td><td>230 -</td></tr<>	- - - - - - - - - - - - - - - - - - -							230 -
9 228 10 227 11 226 12 225 12.5 LOGGED BY: M. Akhtar COMPLETION DEPTH: 3.05 m REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/4/11 PRO. IFCR FINGINERE: Kendall Thiessen								229 -
10 227 11 226 12 225 12 12.5 LOGGED BY: M. Akhtar COMPLETION DEPTH: 3.05 m REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/4/11 PROJECT ENGINEER: Kendall Thiessen Page 1 of								228 -
LOGGED BY: M. Akhtar REVIEWED BY: Kendall Thiessen COMPLETION DEPTH: 3.05 m REVIEWED BY: Kendall Thiessen Page 1 of Page 1 of								227
LOGGED BY: M. Akhtar COMPLETION DEPTH: 3.05 m REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/4/11 PROJECT ENGINEER: Kendall Thiessen Page 1 of								226
LOGGED BY: M. Akhtar COMPLETION DEPTH: 3.05 m REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/4/11 PRO.IFCT FNGINFER: Kendall Thiessen Page 1 of	12.5							225 -
REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/4/11 PROJECT ENGINEER: Kendall Thiessen Page 1 of							LOGGED BY: M. Akhtar COMPLETION DEPTH: 3.05 m	
	100		ALCOM				REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/4/11 PROJECT ENGINEER: Kendall Thiessen Page 1	of 1

LOCATION: N 5518895.43 / E 619532.73 PROJECT NO.: CONTRACTOR: Maple Leaf Drilling Ltd. METHOD: Acker MP-5 125 mm SSA ELEVATION (m): SAMPLE TYPE GRAB SHELBY TUBE SPLIT SPOON BULK NO RECOVERY COF (ii) H III) SHELBY TUBE SPLIT SPOON BULK UNDRAINED SHEAR STRENGTH (iii) IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	50162215 236.92 E TS
CONTRACTOR: Maple Leaf Drilling Ltd. METHOD: Acker MP-5 125 mm SSA ELEVATION (m): SAMPLE TYPE GRAB SHELBY TUBE SPLIT SPOON BULK NO RECOVERY COF (i) I) I) III SPLIT SPOON BULK INDRAINED SHEAR STRENGTH + Torvane + XQU X (ii) III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	TS
SAMPLE TYPE GRAB SPLIT SPOON BULK NO RECOVERY COF Image: Second s	ELEVATION
0 20 40 60 80 100 50 100 150 200	
- brown, moist, stiff - high plasticity - becoming firm below 2 m - trace silt inclusions G70 G70	236 -
	235 - <u> </u> 234 -
4 5 G72 G72	233
- grey below 5.3 m - G73 - G7	231
	230
9 SILT- (Till) - silty, trace sand, trace gravel - light grey to grey, moist, very dense - low plasticity AUGER REFUSAL AT 9.52 m BELOW GROUND SURFACE IN	228
SILT (Till). Notes: 1. No sloughing observered during drilling. 2. Seepage observed below 8.7 m. Water Level at 2.4 m below ground at end of drilling. 3. Test hole backfilled with bentonite and auger cuttings upon completion.	227
	225
LOGGED BY: M. Akhtar COMPLETION DEPTH:	9.53 m
REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/	4/11 Page 1 of 1

LOCATIO CONTRA SAMPLE	N: N 5518779.82 / E 619850.32 CTOR: Maple Leaf Drilling Ltd. TYPE GRAB SHELBY TUBE	M			PROJECT NO.: 601	62215				
SAMPLE		M	PROJECT NO.: 60162							
SAIVIPLE			IETH 1 court	<u>OD:</u>	ker MP-5 125 mm SSA ELEVATION (m): 23	6.75				
DEPTH (m) SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	(N) TAS	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ** Becker ** + Torvane + > Dynamic Cone ◊ * QU × PENETRATION TESTS UNDRAINED SHEAR STRENGTH ** Becker ** + Torvane + > Dynamic Cone ◊ • QU × > DENT (Standard Pen Test) ◆ □ Lab Vane □ 20 40 60 80 100 ■ Total Unit Wt ■ • Field Vane ● • Field Vane ● • (kPa) 20 40 60 80 100 50 100 150 200	ELEVATION				
= 0 } }	TOPSOIL - organics, rootlets, black, dry									
	CLAY - silty - dark grey to brown, moist, stiff - high plasticity		G88 G89			236 -				
	- firm below 2.4 m END OF TEST HOLE AT 3 m BELOW GROUND SURFACE IN CLAY		G90		•	234 -				
-4	Notes: 1. No sloughing observered during drilling. 2. No seepage observed. 3. Test hole backfilled with bentonite and auger cuttings upon completion.					233 -				
						232 -				
						230 -				
						229 - 228 -				
						227 -				
						226 -				
12 12 12 12 12 12.5										
		•		•	OGGED BY: M. Akhtar COMPLETION DEPTH: 3.05	m				
	AECOM				KEVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/4/11 PROJECT ENGINEER: Kendall Thiessen	age 1 of 1				

PROJECT: Wyper Road Firearms Training Facility				CLIENT: Winnipeg Police Services									TE	TESTHOLE NO: TH11-25		
LOCA		: N 5518809.35 / E 619983.94		PROJECT NO.: 60								OJECT NO.: 6016221	15			
CONT			N	<u>IETH</u> 1ерги	OD:	Ack	er MP	- <u>5 12</u>	<u>25 m</u>	nm SS	SA				$\frac{\text{EVATION}(\text{m}): 236.68}{\text{EVATION}(\text{m}): 236.68}$	}
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ 5 0 16	PENETF	RATION Becker amic C ndard I ws/300 0 6 al Unit (kN/m ³ 3 19 MC 0 6 6	N TEST T ₩ Cone < Pen Te Pen Te	S est) ♦ 80 100 0 21 iid 80 100	UNDRA		HEAR STF vane + QU X Vane □ et Pen. ∠ I Vane ● Pa) 00 1!	RENGTH	COMMENTS	ELEVATION
E 0	3333	TOPSOIL - rootlets, black, dry									· · · · · · · · · · · · · · · · · · ·					
-1		CLAY - sity - grey, moist, stiff - high plasticity		G91 G92			•									236
2		- firm below 2.4 m														235
-3		END OF TEST HOLE AT 3 m BELOW GROUND SURFACE IN CLAY. Notes: 1. No sloughing observered during drilling. 2. No seepage observed.		G93												233 -
		 Test hole backfilled with bentonite and auger cuttings upon completion. 					•									232 -
6																231 -
9/16/11 2																230 -
																229 -
						· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·							227 -
																226 -
10LE 60162215 BO							· · · · · · · · · · · · · · · · · · ·									225 -
12.5						1					•••••		·:····			
5		AECOM				RE	VIEWE	ED B	<u>ivi. A</u> Y: Ke	endall	Thiese	sen		OMPLE	ETION DATE: 8/4/11	
50	ALCOM			PROJECT ENGINEER: Kendall Thiessen								ssen	Page 1 of 1			

PROJ	JECT	: Wype	er Road Firearms Training	Facility	С	LIEN	IT: W	/innipe	g Police Services	3	TE	STHOLE NO: TH11-2	26
LOCA	LOCATION: N 5518838.05 / E 619889.14										PR	PROJECT NO.: 60162215	
CON	TRAC	CTOR:	Maple Leaf Drilling Ltd.		<u> </u>	IETH	OD:	Acker	MP-5 125 mm SS	SA	ELE	EVATION (m): 236.69	•
SAME		TYPE	GRAB			JSPLI	T SPO	ON			RECOVER		
BACK	FILL	. TYPE	BENTONITE	<u> </u>	Щ	JSLO	UGH	1	GROUT		TINGS	. SAND	T
DEPTH (m)	SOIL SYMBOL	-	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PE ◆ SPT 0 20 16 17 Plae	NETRATION TESTS ★ Becker ★ Dynamic Cone ◇ (Standard Pen Test) ◆ (Blows/300mm) 40 60 80 100 Total Unit W: (kN/m) 18 19 20 21 stic MC Liquid	UNDRAINED SHEAR S + Torvane - ×QU × □ Lab Vane △ Pocket Pen ● Field Vane (kPa)	STRENGTH + □ . △	COMMENTS	ELEVATION
- 0	222		TOPSOIL - rootlets black dry					20	40 60 80 100	50 100	150 200		-
		< ▼	CLAY - silty - grey, moist, stiff to soft - high plasticity - trace silt inclusions [<15 mm]			G94 G95							236
2			- mottled grey and brown, soft	below 1.8 m									234 -
-3						G96							233-
													232
6													231 -
116/11 2													230 -
MA WINN.GDT (SILT (Till) - some sand. trace g		-								229
ER RD.GPJ U			AUGER REFUSAL AT 8.8 m B SURFACE IN CLAY. Notes:	ELOW GROUND									228
010 - 10 			 No slotgring busel vered dui No seepage observed during Installed 25 mm diameter st 8.8 m. Complete with 1.5 m of flush-mount cover. Backfilled v bentonite to surface. Water lev 	g drilling. andpipe piezometer well at f screen and 1.0 m stick up vith sand to 7.01 m and rel at el. 235.30 on August									227
E 60162215 BOREH(1			10, 2011.										226
로													
LS 12.5	1	1			1			LOGO	ED BY: M. Akhtar	<u> </u>	COMPL F	ETION DEPTH: 3.05 m	
3 OF			AECOM					REVI	EWED BY: Kendall	Thiessen	COMPLE	ETION DATE: 8/4/11	
ĕ								PROJ	ECT ENGINEER: I	Kendall Thiessen		Page	1 of 1

PROJ	ECT:	Wyper Road Firearms Training Facility	С	LIEN	IT: W	innipeg Police Services	TE	STHOLE NO: TH11-2	27			
LOCA	LOCATION: N 5518912.59 / E 619887.46				PROJECT NO.: 601622							
CONT	RAC	TOR: Maple Leaf Drilling Ltd.	N	<u>IETH</u>	OD:	Acker MP-5 125 mm SSA	ELE	<u>EVATION (m): 236.74</u>	F			
SAMP		YPE GRAB SHELBY TUBE	$ \square $	SPLI	T SPO		RECOVER	RY CORE				
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR S ★ Becker ₩ > Dynamic Cone ◊ ♦ SPT (Standard Pen Test) (Blows/300mm) 0 20 40 60 80 100 ■ Total Unit Wt ■ (kN/m²) (kN/m²) 20 21 Plastic MC Liquid (kPa) 20 40 60 80 100 ■ Total Unit Wt ■ (kN/m²) 20 21 Plastic MC Liquid	TRENGTH ⊢ . Δ ●	COMMENTS	ELEVATION			
_ 0		TOPSOIL - organics, rootlets, black, dry										
-1		CLAY - silty - dark grey, moist, stiff to soft - high plasticity - trace silt inclusions [<10 mm] - light grey - grey to ligh grey below 1.5 m		G97 G98					236 - 235 -			
		END OF TEST HOLE AT 3 m BELOW GROUND SURFACE IN		G99					234 -			
- - - - - - - - - - - - -		 Notes: 1. No Sloughing observered during drilling. 2. No seepage observed. 3. Test hole backfilled with bentonite and auger cuttings upon completion. 							233 -			
5									232 -			
									230 -			
									229 -			
9 9									228 -			
									226 -			
									225 -			
- 12.5												
5		AECOM				LOGGED BY: M. Akhtar REVIEWED BY: Kendall Thiessen	COMPLE COMPLE	ETION DEPTH: 3.05 m ETION DATE: 8/4/11				
						PROJECT ENGINEER: Kendall Thiessen		Page 1 of 1				

PROJECT: Wyper Road Firearms Training Facility				CLIENT: Winnipeg Police Services TESTHOLE NO: T								
LOCA	TION	: N 5518973.07 / E 619832.32				PROJECT NO.: 6016221	15					
CONT	CONTRACTOR: Maple Leaf Drilling Ltd.				AETHOD: Acker MP-5 125 mm SSA ELEVATION (m							
SAMF			$\underline{\nabla}$	SPLI	T SPC		1					
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ★ Becker ★ + Torvane + ◆ Dynamic Cone ◇ × QU × ● SPT (Standard Pen Test) ◆ □ Lab Vane □ 0 20 40 60 80 100 ■ Total Unit Wt ■ (kN/m ²) △ Pocket Pen. △ ● Field Vane ● 16 17 18 19 20 21 (kPa)	ELEVATION					
_ 0	8888	TOPSOIL - organics, black, dry										
- - - - - - - - - - - - - - - - - - -		CLAY - silty - mottled black and grey, moist, stiff becoming firm with depth - intermediate to high plasticity - trace silt inclusions [<10 mm]		G100 G101			236 -					
-2		- brown below 2 m					233					
-3		END OF TEST HOLE AT 3 m BELOW GROUND SURFACE IN		G102			234 -					
- - - - - - - - - - - - - - - - - - -		CLAY. Notes: 1. No Sloughing observered during drilling. 2. No seepage observed. 3. Test hole backfilled with bentonite and auger cuttings upon completion.					233 -					
- 5 							232 -					
							231 -					
							230 -					
							229-					
77EK KU.GF.							228 -					
							227 -					
							226 -					
109 							225 -					
	· I	A = COM			ı	LOGGED BY: M. Akhtar COMPLETION DEPTH: 3.05 m						
19		A=COM				REVIEWED BY: Kendall Thissen COMPLETION DATE: 8/4/11	1 05 4					
11						Page Page	IUTI					

PROJECT: Wyper Road Firearms Training Facility				LIEN	T: W	innipeg Police Services TESTHOLE NO: TH11-29	TESTHOLE NO: TH11-29							
LOCA	LOCATION: N 5518938.75 / E 619757.49					PROJECT NO.: 601622								
CONT	CONTRACTOR: Maple Leaf Drilling Ltd.				METHOD: Acker MP-5 125 mm SSA ELEVATION (m): 2									
SAMF	LE T		$ \square $	SPLI	T SPO									
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ★ Becker # + Torvane + ◆ Dynamic Cone ◊ × QU × • SPT (Standard Pen Test) ◆ □ Lab Vane □ 0 20 40 60 80 100 ■ Total Unit Wt ■ □ ΔPocket Pen. Δ ← Field Vane Φ (kV/m ³) 16 17 18 19 20 21 (kPa) 20 40 ● n 100 50 100 200 20	ELEVATION							
0		TOPSOIL - black, dry												
- - - - - 1		CLAY - silty - grey to dark grey, moist, stiff to soft - intermediate plasticity - trace silt inclusions [< 8 mm], trace rootlets		G103 G104			236							
2		- brown brown below 2.2 m		G105			235 -							
4		END OF TEST HOLE AT 3 m BELOW GROUND SURFACE IN CLAY. Notes: 1. No sloughing observered during drilling. 2. No seepage observed. 3. Test hole backfilled with bentonite and auger cuttings upon completion.					233 -							
- - - - - 5 - - - - - - - - - - -							232 -							
							230 -							
1/1/11/11/11/11/11/11/11/11/11/11/11/11							229 -							
иүрек кы.бр. с 6 6							227 -							
							226 -							
							225 -							
12.5				<u> </u>		LOGGED BY: M. Akhtar COMPLETION DEPTH: 3.05 m								
5		AECOM				REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/4/11								
<u></u>						PROJECT ENGINEER: Kendall Thiessen Page 1	of 1							

PROJECT: Wyper Road Firearms Training Facility				CLIENT: Winnipeg Police Services TESTHOLE NO: TH								
LOCA	LOCATION: N 5518861.39 / E 619810.94				PROJECT NO.: 601							
CONT	RAC	TOR: Maple Leaf Drilling Ltd.	M	IETH	OD:	Acker MP-5 125 mm SSA ELEVATION (m): 236.70)					
SAMP				SPLI	T SPC		1					
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ★ Becker # + Torvane + ◆ Dynamic Cone ◊ × • SPT (Standard Pen Test) ◆ □ Lab Vane □ 0 20 40 60 80 100 ■ Total Unit Wt ■ △ △ Pocket Pen. △ ↔ Field Vane ⊕ 16 17 18 19 20 21 (kPa) ↔ Field Vane ⊕ (kPa)	ELEVATION					
_ 0	<u>}</u>	TOPSOIL- black, dry										
		CLAY - silty - brown to black, dry, stiff to soft - high plasticity - trace silt inclusions [< 20 mm]		G106 G107			236 - 235 -					
-2 				G108			234 -					
- - - - - - 4		CLAY. Notes: 1. No sloughing observered during drilling. 2. No seepage observed. 3. Test hole backfilled with bentonite and auger cuttings upon completion.					233 -					
5							232 -					
6							231 -					
							229 -					
							228 -					
10 10 10							227 -					
							226 -					
12 10 10 10 10 10 10 10 10 10 10 10 10 10							225 -					
비						LOGGED BY: M. Akhtar COMPLETION DEPTH: 3.05 m						
-06		ALCOM				PROJECT ENGINEER: Kendall Thiessen Page	1 of 1					

PROJECT: wyper Road Firearms Training Facility	C	LIEN	IT: N	nnipeg Police Services TESTHOLE NO: TH11-3	TESTHOLE NO: TH11-31				
LOCATION: N 5518795.85 / E 619772.68		PROJECT NO.: 60162							
CONTRACTOR: Maple Leaf Drilling Ltd.	N	<u>/ETH</u>	Acker MP-5 125 mm SSA ELEVATION (m): 236.87	,					
		SPL	IT SPC						
(IIII) SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS ★ Becker ★ ◆ Dynamic Cone ◇ ♦ SPT (Standard Pen Test) (Blows/300mm) 0 20 40 60 80 100 ■ Total Unit Wt ■ (kN/m ³) 16 17 18 19 20 21 Plastic MC Liquid 20 40 € 0 40 100 50 100 150 200	ELEVATION				
0 CONSOL - black, dry									
CLAY - silty - mottled dark grey to black, dry, very stiff to soft - intermediate plasticity		G109 G110			236 -				
- brown below 2.3 m		0111			235 - 234 -				
 END OF TEST HOLE AT 3 m BELOW GROUND SURFACE IN CLAY. Notes: No sloughing observered during drilling. No seepage observed. Test hole backfilled with bentonite and auger cuttings upon completion. 		GIII			233 -				
					232 - 231 -				
					230 - 229 -				
					228 -				
					227 -				
					226 - 225 -				
		<u> </u>	1	LOGGED BY: M. Akhtar COMPLETION DEPTH: 3.05 m					
AECOM				REVIEWED BY: Kendall Thiessen COMPLETION DATE: 8/4/11 PROJECT ENGINEER: Kendall Thiessen Page	1 of 1				

AECOM

Appendix B

Exterior Slope Excavation 3.4 m below grade

